

The impacts of hydrologic restoration on soil C sequestration, nutrient cycling and primary production in Sierra Nevada meadows

Cody C. Reed, Benjamin W. Sullivan

University of Nevada Reno

Funding provided by

California Department of Fish and Wildlife California Air Resources Board

California Environmental Protection Agency

Thank you!

- Plumas Corp
- Ryan Kasten, Kelsey Smith, Darden Mueller

Annual variation in CO₂ Flux

Relationship with soil moisture and temperature

13C in Roots

Meadows have large annual net soil C fluxes

Meadows have large annual net soil C fluxes

Difference between sinks and sources driven by inputs not outputs

Restoration Chronosequence

- 22-year restoration chronosequence
 - Constrained by climate, parent material, vegetation, restoration type
- 6 restored meadows & unrestored pairs
 - Relative changes at each site over time
 - Allow us to control for
 - Microclimate
 - Watershed size
 - Management
 - Climate history
 - Level of degradation & soil C prior to restoration

Aboveground Biomass

Restoration effect but no time effect

185 – 1514% increase

No significant difference among restored sites (p = 0.33, F = 1.2)

Max aboveground biomass achieved soon after restoration

Belowground Biomass

Restoration & Time Effect 41 - 432% increase

Max belowground biomass achieved after aboveground

Significant increase through time $(p = 0.02, r^2 = 0.84)$

Soil Carbon Stocks

Restoration effect at some sites
0.5 - 93% increase

Significant difference among restored sites only if youngest site included (p = 0.06, F = 2.1)

Soil Nitrogen Stocks

Restoration effect at some sites

1.1 - 138% increase

% Soil Carbon

% Soil Carbon

% Soil Carbon

The Upshot

- Hydrologic restoration of degraded meadows leads to rapid and significant increases in above- and belowground biomass
- Max vegetation biomass may be achieved <10 y following restoration
- Root biomass may continue to show increases over a longer time period
- Soil C & N increase as a result of restoration but patterns do not emerge through time
 - Other biogeochemical processes or landscape characteristics may influence rates of C sequestration

Below ground C may be more ecologically relevant

Potential Annual Restoration Gains

Net belowground C gains

0.16 to 1.03 kg C m⁻² y⁻¹

or if all ~90,000 ha of degraded

meadows were restored

144,000 to 927,000 MT C y⁻¹

Potential Annual Restoration Gains

0.39 kg C m⁻² y⁻¹ (Prevented Losses)

0.16 to 1.03 kg C m⁻² y⁻¹ (Gains)

0.55 to 1.42 kg C m⁻² y⁻¹ (Net Impact)

=

495,000 to 1.3 million MT C y⁻¹

